Published in

Oxford University Press, Neuro-Oncology, Supplement_1(23), p. i33-i34, 2021

DOI: 10.1093/neuonc/noab090.135

Links

Tools

Export citation

Search in Google Scholar

LGG-11. Bh3-Mimetics Targeting BCL-Xl Selectively Impact the Senescent Compartment of Pilocytic Astrocytoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Introduction Pilocytic astrocytoma (PA) is the most common brain tumor in children. Activation of the mitogen-activated protein kinase (MAPK) pathway is a hallmark of PA. Complete remission in non-resectable tumors is infrequently observed with current therapeutic approaches. Most PA tumors cells are in oncogene-induced senescence (OIS), which may explain the benign growth behavior of PAs but also account for resistance to therapy. Therefore, treatment of PA with senolytic agents such as BH3-mimetics is a promising new approach. Methods Three patient-derived PA cell lines, DKFZ-BT66, DKFZ-BT308 (both KIAA1549:BRAF-fusion positive) and DKFZ-BT314 (BRAF V600E-mutation positive) were used. Depending on inducible expression or repression of SV40 large T antigen all models can reflect both states of PA, proliferation and OIS. Cells in both states were treated with different BH3-mimetics. Inhibition of metabolic activity was measured after 72 hours. Target expression was assessed by RT-qPCR and Western blot. On-target activity of BH3-mimetics was determined by immunoprecipitation (IP) of Bcl-xL/BAK. Results BH3-mimetics with strong binding affinity for Bcl-xL (Navitoclax, A-1131852, A-1155463) showed selectivity for senescent cells in 2/3 models (DKFZ-BT66 and DKFZ-BT314) and acted in nanomolar ranges. IC50s for Navitoclax (Cmax 6600nM in patients) were 40nM (OIS) vs. 200nM (proliferation) and 170nM (OIS) vs. 3700nM (proliferation) in DKFZ-BT66 and DKFZ-BT314, respectively. Target engagement was evident in the Bcl-xL/BAK-IP, and target expression of Bcl-xL was similar in all models studied. The relative resistance of senescent DKFZ-BT308 despite on-target activity is currently being investigated. Conclusion Senolytic treatment of PA with BH3-mimetics targeting Bcl-xL is a promising new strategy directly targeting the major senescent part of the tumor in clinically archivable concentrations. However, our data suggests that not all PAs may respond to treatment. The analysis of comparative gene expression analysis and BH3-profiling is ongoing to define predictive biomarkers.