Published in

JMIR Publications, JMIR Medical Informatics, 6(9), p. e20407, 2021

DOI: 10.2196/20407

Links

Tools

Export citation

Search in Google Scholar

The Clinical Decision Support System AMPEL for Laboratory Diagnostics: Implementation and Technical Evaluation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Laboratory results are of central importance for clinical decision making. The time span between availability and review of results by clinicians is crucial to patient care. Clinical decision support systems (CDSS) are computational tools that can identify critical values automatically and help decrease treatment delay. Objective With this work, we aimed to implement and evaluate a CDSS that supports health care professionals and improves patient safety. In addition to our experiences, we also describe its main components in a general manner to make it applicable to a wide range of medical institutions and to empower colleagues to implement a similar system in their facilities. Methods Technical requirements must be taken into account before implementing a CDSS that performs laboratory diagnostics (labCDSS). These can be planned within the functional components of a reactive software agent, a computational framework for such a CDSS. Results We present AMPEL (Analysis and Reporting System for the Improvement of Patient Safety through Real-Time Integration of Laboratory Findings), a labCDSS that notifies health care professionals if a life-threatening medical condition is detected. We developed and implemented AMPEL at a university hospital and regional hospitals in Germany (University of Leipzig Medical Center and the Muldental Clinics in Grimma and Wurzen). It currently runs 5 different algorithms in parallel: hypokalemia, hypercalcemia, hyponatremia, hyperlactatemia, and acute kidney injury. Conclusions AMPEL enables continuous surveillance of patients. The system is constantly being evaluated and extended and has the capacity for many more algorithms. We hope to encourage colleagues from other institutions to design and implement similar CDSS using the theory, specifications, and experiences described in this work.