Published in

Budapest University of Technology and Economics, Periodica Polytechnica Electrical Engineering and Computer Science, 3(65), p. 196-206, 2021

DOI: 10.3311/ppee.16656

Links

Tools

Export citation

Search in Google Scholar

Enhanced Direct Power Control Strategy of a DFIG-Based Wind Energy Conversion System Operating Under Random Conditions

Journal article published in 2021 by Younes Sahri ORCID, Salah Tamalouzt, Sofia Belaid Lalouni
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The main objective of this paper is the performances analysis of an Enhanced Direct Power Control (EDPC), applied to Doubly Fed Induction Generator (DFIG) driven by variable speed Wind Turbine (WT). This control strategy uses hysteresis regulators and switching table for active and reactive powers control. These latter are estimated using rotor currents and grid voltages instead of a traditional measurement of stator currents. In addition, the EDPC switching table is based on the position of the rotor flux instead of the stator flux in order to have better regulation accuracy because the rotor voltage vector directly influences the rotor flux and has a proportional relationship with the active and reactive powers. All the operating modes (sub-synchronous, super-synchronous, synchronous and over-speed) of the variable speed WT-DFIG system and the possibility of local reactive power compensation are reported and discussed in this paper. Depending on the operating zone of the WT, Maximum Power Point Tracking (MPPT) technique and pitch angle control are considered to optimize the wind energy efficiency. The validation of the proposed EDPC strategy has been performed through simulation tests under MATALB/Simulink, the obtained results show robustness and good performances with low THD of the generated currents.