Published in

MDPI, Symmetry, 6(13), p. 1012, 2021

DOI: 10.3390/sym13061012

Links

Tools

Export citation

Search in Google Scholar

Low Temperature Dynamic Chromatography for the Separation of the Interconverting Conformational Enantiomers of the Benzodiazepines Clonazolam, Flubromazolam, Diclazepam and Flurazepam

Journal article published in 2021 by Roberta Franzini ORCID, Alessia Rosetti, Claudio Villani ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Benzodiazepines (BZDs) are an important class of psychoactive drugs with hypnotic-sedative, myorelaxant, anxiolytic and anticonvulsant properties due to interaction with the GABAa receptor in the central nervous system of mammals. BZDs are interesting both in clinical and forensic toxicology for their pharmacological characteristics and potential of abuse. The presence of a non-planar diazepine ring generates chiral conformational stereoisomers, even in the absence of stereogenic centers. A conformational enrichment of BZD at the binding sites has been reported in the literature, thus making interesting a stereodynamic screening of a wide range of BZDs. Herein, we report the investigation of three stereolabile 1,4-benzodiazepine included in the class of “designer benzodiazepines” (e.g., diclazepam, a chloro-derivative of diazepam, and two triazolo-benzodiazepines, flubromazolam and clonazolam) and a commercially available BZD known as flurazepam, in order to study the kinetic of the “ring-flip” process that allows two conformational enantiomers to interconvert at high rate at room temperature. A combination of low temperature enantioselective dynamic chromatography on chiral stationary phase and computer simulations of the experimental chromatograms allowed us to measure activation energies of enantiomerization (ΔG‡) lower than 18.5 kcal/mol. The differences between compounds have been correlated to the pattern of substitutions on the 1,4-benzodiazepinic core.