Dissemin is shutting down on January 1st, 2025

Published in

Marine Technology Society, Marine Technology Society Journal, 3(55), p. 144-145, 2021

DOI: 10.4031/mtsj.55.3.11

Links

Tools

Export citation

Search in Google Scholar

Super Sites for Advancing Understanding of the Oceanic and Atmospheric Boundary Layers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Air‐sea interactions are critical to large-scale weather and climate predictions because of the ocean's ability to absorb excess atmospheric heat and carbon and regulate exchanges of momentum, water vapor, and other greenhouse gases. These exchanges are controlled by molecular, turbulent, and wave-driven processes in the atmospheric and oceanic boundary layers. Improved understanding and representation of these processes in models are key for increasing Earth system prediction skill, particularly for subseasonal to decadal time scales. Our understanding and ability to model these processes within this coupled system is presently inadequate due in large part to a lack of data: contemporaneous long-term observations from the top of the marine atmospheric boundary layer (MABL) to the base of the oceanic mixing layer.We propose the concept of “Super Sites” to provide multi-year suites of measurements at specific locations to simultaneously characterize physical and biogeochemical processes within the coupled boundary layers at high spatial and temporal resolution. Measurements will be made from floating platforms, buoys, towers, and autonomous vehicles, utilizing both in-situ and remote sensors. The engineering challenges and level of coordination, integration, and interoperability required to develop these coupled ocean‐atmosphere Super Sites place them in an “Ocean Shot” class.