Full text: Download
The success of an irrigation decision support system (DSS) much depends on the reliability of the information provided to farmers. Remote sensing data can expectably help validate that information at the field scale. In this study, the MOHID-Land model, the core engine of the IrrigaSys DSS, was used to simulate the soil water balance in an irrigated vineyard located in southern Portugal during three growing seasons. Modeled actual basal crop coefficients and transpiration rates were then compared with the corresponding estimates derived from the normalized difference vegetation index (NDVI) computed from Sentinel-2 imagery. On one hand, the hydrological model was able to successfully estimate the soil water balance during the monitored seasons, exposing the need for improved irrigation schedules to minimize percolation losses. On the other hand, remote sensing products found correspondence with model outputs despite the conceptual differences between both approaches. With the necessary precautions, those products can be used to complement the information provided to farmers for irrigation of vine crop, further contributing to the regular validation of model estimates in the absence of field datasets.