Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter Open, Nanophotonics, 9(10), p. 2441-2450, 2021

DOI: 10.1515/nanoph-2021-0102

Links

Tools

Export citation

Search in Google Scholar

Unmixing octopus camouflage by multispectral mapping of Octopus bimaculoides’ chromatic elements

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Cephalopods camouflage abilities arise from highly specialized chromatic elements in their skin, chromatophores, iridophores, and leucophores, that enable them to display complex and rapidly changing color patterns. Despite the extensive study of these chromatic elements in squid and cuttlefish, full characterization of their individual optical response is still elusive in the Octopus species. We present here detailed multispectral analysis and mapping of the Octopus bimaculoides skin that allows to precisely identify the spatial distribution of the animal’s pigmented and structural elements. The mutual interaction of chromatophores and iridophores is also characterized both in terms of spectral response and spatial localization. The spectral information obtained through this analysis helps to understand the complexity and behavior of these natural tissues while continuing to serve as an inspiration for the fabrication of advanced, chromatically adaptable materials.