Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(12), 2021

DOI: 10.1038/s41467-021-24161-1

Links

Tools

Export citation

Search in Google Scholar

Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractToward high-performance thermoelectric energy conversion, the electrons and holes must work jointly like two wheels of a cart: if not longitudinally, then transversely. The bipolar effect — the main performance restriction in the traditional longitudinal thermoelectricity, can be manipulated to be a performance enhancer in the transverse thermoelectricity. Here, we demonstrate this idea in semimetal Mg2Pb. At 30 K, a giant transverse thermoelectric power factor as high as 400 μWcm−1K−2 is achieved, a 3 orders-of-magnitude enhancement than the longitudinal configuration. The resultant specific heat pumping power is ~ 1 Wg−1, higher than those of existing techniques at 10~100 K. A large number of semimetals and narrow-gap semiconductors making poor longitudinal thermoelectrics due to severe bipolar effect are thus revived to fill the conspicuous gap of thermoelectric materials for solid-state applications.