Dissemin is shutting down on January 1st, 2025

Published in

Springer, Neural Computing and Applications, 3(34), p. 1653-1671, 2021

DOI: 10.1007/s00521-021-06117-0

Links

Tools

Export citation

Search in Google Scholar

Dynamical systems as a level of cognitive analysis of multi-agent learning

Journal article published in 2021 by Wolfram Barfuss ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA dynamical systems perspective on multi-agent learning, based on the link between evolutionary game theory and reinforcement learning, provides an improved, qualitative understanding of the emerging collective learning dynamics. However, confusion exists with respect to how this dynamical systems account of multi-agent learning should be interpreted. In this article, I propose to embed the dynamical systems description of multi-agent learning into different abstraction levels of cognitive analysis. The purpose of this work is to make the connections between these levels explicit in order to gain improved insight into multi-agent learning. I demonstrate the usefulness of this framework with the general and widespread class of temporal-difference reinforcement learning. I find that its deterministic dynamical systems description follows a minimum free-energy principle and unifies a boundedly rational account of game theory with decision-making under uncertainty. I then propose an on-line sample-batch temporal-difference algorithm which is characterized by the combination of applying a memory-batch and separated state-action value estimation. I find that this algorithm serves as a micro-foundation of the deterministic learning equations by showing that its learning trajectories approach the ones of the deterministic learning equations under large batch sizes. Ultimately, this framework of embedding a dynamical systems description into different abstraction levels gives guidance on how to unleash the full potential of the dynamical systems approach to multi-agent learning.