Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Personalized Medicine, 7(11), p. 611, 2021

DOI: 10.3390/jpm11070611

Links

Tools

Export citation

Search in Google Scholar

Ultrasonography in the Differentiation of Endometriomas from Hemorrhagic Ovarian Cysts: The Role of Texture Analysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The ultrasonographic (US) features of endometriomas and hemorrhagic ovarian cysts (HOCs) are often overlapping. With the emergence of new computer-aided diagnosis techniques, this is the first study to investigate whether texture analysis (TA) could improve the discrimination between the two lesions in comparison with classic US evaluation. Fifty-six ovarian cysts (endometriomas, 30; HOCs, 26) were retrospectively included. Four classic US features of endometriomas (low-level internal echoes, perceptible walls, no solid components, and less than five locules) and 275 texture parameters were assessed for every lesion, and the ability to identify endometriomas was evaluated through univariate, multivariate, and receiver operating characteristics analyses. The sensitivity (Se) and specificity (Sp) were calculated with 95% confidence intervals (CIs). The texture model, consisting of seven independent predictors (five variations of difference of variance, image contrast, and the 10th percentile; 100% Se and 100% Sp), was able to outperform the ultrasound model composed of three independent features (low-level internal echoes, perceptible walls, and less than five locules; 74.19% Se and 84.62% Sp) in the diagnosis of endometriomas. The TA showed statistically significant differences between the groups and high diagnostic value, but it remains unclear if the textures reflect the intrinsic histological characteristics of the two lesions.