Dissemin is shutting down on January 1st, 2025

Published in

Frontiers Media, Frontiers in Microbiology, (12), 2021

DOI: 10.3389/fmicb.2021.676582

Links

Tools

Export citation

Search in Google Scholar

Altering Compositional Properties of Viral Genomes to Design Live-Attenuated Vaccines

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Live-attenuated vaccines have been historically used to successfully prevent numerous diseases caused by a broad variety of RNA viruses due to their ability to elicit strong and perdurable immune-protective responses. In recent years, various strategies have been explored to achieve viral attenuation by rational genetic design rather than using classic and empirical approaches, based on successive passages in cell culture. A deeper understanding of evolutionary implications of distinct viral genomic compositional aspects, as well as substantial advances in synthetic biology technologies, have provided a framework to achieve new viral attenuation strategies. Herein, we will discuss different approaches that are currently applied to modify compositional features of viruses in order to develop novel live-attenuated vaccines.