Dissemin is shutting down on January 1st, 2025

Published in

The University of Chicago Press, Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches, 3(87), p. 445-455, 2014

DOI: 10.1086/675493

Links

Tools

Export citation

Search in Google Scholar

Mistletoebirds and xylose: Australian frugivores differ in their handling of dietary sugars

Journal article published in 2014 by Kathryn R. Napier, Patricia A. Fleming ORCID, Todd J. McWhorter ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Carbohydrate-rich mistletoe fruits are consumed by a wide range of avian species. Small birds absorb a large portion of water-soluble nutrients, such as glucose, via the paracellular pathway. d-xylose, a pentose monosaccharide, is abundant in some nectars and mistletoe fruits consumed by birds, and it has been suggested that it is most likely absorbed via the paracellular pathway in birds. We measured apparent assimilation efficiency (AE*) and bioavailability (f) for d-xylose and d- and l-glucose in three frugivorous Australian bird species. Mistletoebirds, silvereyes, and singing honeyeaters showed significantly lower AE* for d-xylose than for d-glucose. Across two diet sugar concentrations, silvereyes and singing honeyeaters significantly increased(f)of both l-glucose (a metabolically inert isomer of d-glucose commonly used to quantify paracellular uptake) and d-xylose on the more concentrated diet, probably because of increased gut processing time. By contrast, mistletoebirds (mistletoe fruit specialists) did not vary (f) of either sugar with diet concentration. Mistletoebirds also showed higher (f) for d-xylose than l-glucose and eliminated d-xylose more slowly than silvereyes and singing honeyeaters, demonstrating differences in the handling of dietary xylose between these species. Our results suggest that d-xylose may be absorbed by both mediated and nonmediated mechanisms in mistletoebirds. ; Kathryn R. Napier, Patricia A. Fleming, Todd J. McWhorter