Published in

Frontiers Media, Frontiers in Neuroscience, (15), 2021

DOI: 10.3389/fnins.2021.645702

Links

Tools

Export citation

Search in Google Scholar

Short-Term Audiovisual Spatial Training Enhances Electrophysiological Correlates of Auditory Selective Spatial Attention

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Audiovisual cross-modal training has been proposed as a tool to improve human spatial hearing. Here, we investigated training-induced modulations of event-related potential (ERP) components that have been associated with processes of auditory selective spatial attention when a speaker of interest has to be localized in a multiple speaker (“cocktail-party”) scenario. Forty-five healthy participants were tested, including younger (19–29 years; n = 21) and older (66–76 years; n = 24) age groups. Three conditions of short-term training (duration 15 min) were compared, requiring localization of non-speech targets under “cocktail-party” conditions with either (1) synchronous presentation of co-localized auditory-target and visual stimuli (audiovisual-congruency training) or (2) immediate visual feedback on correct or incorrect localization responses (visual-feedback training), or (3) presentation of spatially incongruent auditory-target and visual stimuli presented at random positions with synchronous onset (control condition). Prior to and after training, participants were tested in an auditory spatial attention task (15 min), requiring localization of a predefined spoken word out of three distractor words, which were presented with synchronous stimulus onset from different positions. Peaks of ERP components were analyzed with a specific focus on the N2, which is known to be a correlate of auditory selective spatial attention. N2 amplitudes were significantly larger after audiovisual-congruency training compared with the remaining training conditions for younger, but not older, participants. Also, at the time of the N2, distributed source analysis revealed an enhancement of neural activity induced by audiovisual-congruency training in dorsolateral prefrontal cortex (Brodmann area 9) for the younger group. These findings suggest that cross-modal processes induced by audiovisual-congruency training under “cocktail-party” conditions at a short time scale resulted in an enhancement of correlates of auditory selective spatial attention.