Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Materials, 13(14), p. 3745, 2021

DOI: 10.3390/ma14133745

Links

Tools

Export citation

Search in Google Scholar

Effect of Bioactive Glass-Containing Light-Curing Varnish on Enamel Remineralization

Journal article published in 2021 by Hyun-Jung Kim ORCID, So-Yeon Mo, Duck-Su Kim ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study aimed to evaluate the effect of novel experimental light-curing bioactive glass (BAG)-containing varnish on enamel remineralization. An experimental light-curing, BAG-containing varnish and two commercial varnishes (Nupro White Varnish; Dentsply International, York, PA, USA and Tooth Mousse; GC Corporation, Tokyo, Japan) were used. Microhardness tests (n = 3), field emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray spectroscopy (EDS) (n = 5), and X-ray diffraction (XRD) analysis (n = 5) were performed to compare the remineralization effect of three varnishes with and without ultrasonication. The data of microhardness test were analyzed using one-way ANOVA and Tukey’s post hoc comparison (P < 0.05). Microhardness of demineralized enamel increased after the application of three varnishes (P < 0.05). The experimental BAG-containing varnish showed the highest microhardness among the three varnishes (P < 0.05). Ultrasonication decreased microhardness of Tooth Mousse and BAG-containing varnish groups (P < 0.05). FE-SEM and XRD revealed precipitates of hydroxyapatite (HAP) or fluorapatite (FAP) crystals of three varnishes. The novel experimental BAG-containing varnish may be a promising clinical strategy for the remineralization of early carious lesions or demineralized enamel surfaces.