Springer Nature [academic journals on nature.com], Cell Death Discovery, 1(7), 2021
DOI: 10.1038/s41420-021-00547-4
Full text: Download
AbstractL-3,4-Dihydroxyphenylalanin (l-DOPA or levodopa) is currently the most used drug to treat symptoms of Parkinson’s disease (PD). After crossing the blood–brain barrier, it is enzymatically converted to dopamine by neuronal cells and restores depleted endogenous neurotransmitter levels. l-DOPA is prone to auto-oxidation and reactive intermediates of its degradation including reactive oxygen species (ROS) have been implicated in cellular damage. In this study, we investigated how oxygen tension effects l-DOPA stability. We applied oxygen tensions comparable to those in the mammalian brain and demonstrated that 2% oxygen almost completely stopped its auto-oxidation. l-DOPA even exerted a ROS scavenging function. Further mechanistic analysis indicated that l-DOPA reprogrammed mitochondrial metabolism and reduced oxidative phosphorylation, depolarized the mitochondrial membrane, induced reductive glutamine metabolism, and depleted the NADH pool. These results shed new light on the cellular effects of l-DOPA and its neuro-toxicity under physiological oxygen levels that are very distinct to normoxic in vitro conditions.