Objective: In-silico methods to find and characterize the ligands against the active site of tau protein which could assist in the therapeutics of Alzheimer's disease. Methods: The aid of various bioinformatic tools such as phylogenetic analysis, homology modeling, and active site prediction led to the molecular docking analysis of the major malefactor for Alzheimer’s disease ‘microtubule- associated tau protein’. A three-dimensional structure of microtubule-related tau protein was created, and the Ramachandran plot was acquired for quality appraisal. Results: Procheck showed 62.95 of residues in the most preferred region with 20% residues in the additional allowed region and 5.7 % in the disallowed region of microtubule-associated tau protein. Screenings of the particles were done dependent on Lipinski's standard of five. Conclusion: Genistein, Hesperidin, and epigallocatechin-3 are the potential ligands in regulating microtubule-related tau protein and Epigallocatechin-3 gallate is the most potent among them and the most elevated negative free vitality of official with the maximum interacting surface territory throughout docking studies.