Published in

MDPI, Viruses, 7(13), p. 1336, 2021

DOI: 10.3390/v13071336

Links

Tools

Export citation

Search in Google Scholar

Adeno-Associated Virus (AAV) Gene Delivery: Dissecting Molecular Interactions upon Cell Entry

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Human gene therapy has advanced from twentieth-century conception to twenty-first-century reality. The recombinant Adeno-Associated Virus (rAAV) is a major gene therapy vector. Research continues to improve rAAV safety and efficacy using a variety of AAV capsid modification strategies. Significant factors influencing rAAV transduction efficiency include neutralizing antibodies, attachment factor interactions and receptor binding. Advances in understanding the molecular interactions during rAAV cell entry combined with improved capsid modulation strategies will help guide the design and engineering of safer and more efficient rAAV gene therapy vectors.