Published in

MDPI, Sustainability, 14(13), p. 7792, 2021

DOI: 10.3390/su13147792

Links

Tools

Export citation

Search in Google Scholar

Bacteria Isolated from Wastewater Irrigated Agricultural Soils Adapt to Heavy Metal Toxicity While Maintaining Their Plant Growth Promoting Traits

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The present study explored the plant growth promotion and bioremediation potential of bacteria inhabiting wastewater irrigated agricultural soils. Thirty out of 75 bacterial isolates (40%), 29/75 (39%) and 28/75 (37%) solubilized Zn, K and PO4 during plate essays respectively. Fifty-six percent of the isolates produced siderophores, while 30% released protease in vitro. Seventy-four percent of bacteria resisted Pb, Ni and Cd at various concentrations added to the culture media plates. Sixteen out of 75 (26%) isolates were able to fix N in Nbf medium. Among these 16 N fixers, N fixing nifH, nifD and nifK genes was detected through PCR in 8, 7 and 1 strain respectively using gene specific primers designed in the study with Enterobacter sp. having all three (nifHKD) genes. Isolated bacteria showed resemblance to diverse genera such as Bacillus, Pseudomonas, Enterobacter, Citrobacter, Acinetobacter, Serratia, Klebsiella and Enterococcus based on 16S rRNA gene sequence analysis. In addition to showing the best mineral solubilization and metal resistance potential, Citrobacter sp. and Enterobacter sp. also removed 87%, 79% and 43% and 86%, 78% and 51% of Ni, Cd and Pb, respectively, from aqueous solution. These potent bacteria may be exploited both for bioremediation and biofertilization of wastewater irrigated soils leading to sustainable agriculture.