Published in

IOP Publishing, Journal of Physics D: Applied Physics, 41(54), p. 413002, 2021

DOI: 10.1088/1361-6463/ac1462

Links

Tools

Export citation

Search in Google Scholar

Glass/glass photovoltaic module reliability and degradation: a review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Glass/glass (G/G) photovoltaic (PV) module construction is quickly rising in popularity due to increased demand for bifacial PV modules, with additional applications for thin-film and building-integrated PV technologies. G/G modules are expected to withstand harsh environmental conditions and extend the installed module lifespan to greater than 30 years compared to conventional glass/backsheet (G/B) modules. With the rapid growth of G/G deployment, understanding the outdoor performance, degradation, and reliability of this PV module construction becomes highly valuable. In this review, we present the history of G/G modules that have existed in the field for the past 20 years, their subsequent reliability issues under different climates, and methods for accelerated testing and characterization of both cells and packaging materials. We highlight some general trends of G/G modules, such as greater degradation when using poly(ethylene-co-vinyl acetate) encapsulants, causing the industry to move toward polyolefin-based encapsulants. Transparent backsheets have also been introduced as an alternative to the rear glass for decreasing the module weight and aiding the effusion of trapped gaseous degradation products in the laminate. New amendments to IEC 61215 standard protocols for G/G bifacial modules have also been proposed so that the rear side power generation and UV exposure will be standardized. We further summarize a suite of destructive and non-destructive characterization techniques, such as current–voltage scans, module electro-optical imaging, adhesion tests, nanoscale structural/chemical investigation, and forensic analysis, to provide deeper insights into the fundamental properties of the module materials degradation and how it can be monitored in the G/G construction. This will set the groundwork for future research and product development.