Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Diagnostics, 7(11), p. 1300, 2021

DOI: 10.3390/diagnostics11071300

Links

Tools

Export citation

Search in Google Scholar

Statistical Methods to Support Difficult Diagnoses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Far too often, one meets patients who went for years or even decades from doctor to doctor without obtaining a valid diagnosis. This brings pain to millions of patients and their families, not to speak of the enormous costs. Often patients cannot tell precisely enough which factors (or combinations thereof) trigger their problems. If conventional methods fail, we propose the use of statistics and algebra to provide doctors much more useful inputs from patients. We use statistical regression for triggering factors of medical problems, and in particular, “balanced incomplete block designs” for factors detection. These methods can supply doctors with much more valuable inputs and can also find combinations of multiple factors through very few tests. In order to show that these methods do work, we briefly describe a case in which these methods helped to solve a 60-year-old problem in a patient and provide some more examples where these methods might be particularly useful. As a conclusion, while regression is used in clinical medicine, it seems to be widely unknown in diagnosing. Statistics and algebra can save the health systems much money, as well as the patients a lot of pain.