Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Catalysts, 7(11), p. 863, 2021

DOI: 10.3390/catal11070863

Links

Tools

Export citation

Search in Google Scholar

Selective Oxidation of Cinnamyl Alcohol to Cinnamaldehyde over Functionalized Multi-Walled Carbon Nanotubes Supported Silver-Cobalt Nanoparticles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The selective oxidation of alcohols to aldehydes has attracted a lot of attention because of its potential use in agrochemicals, fragrances, and fine chemicals. However, due to homogenous catalysis, low yield, low selectivity, and hazardous oxidants, traditional approaches have lost their efficiency. The co-precipitation method was used to synthesize the silver-cobalt bimetallic catalyst supported on functionalized multi-walled carbon nanotubes (Ag-Co/S). Brunauer Emmet Teller (BET), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD) were used to characterize the catalyst. For the oxidation of cinnamyl alcohol (CA) with O2 as an oxidant, the catalyst’s selectivity and activity were investigated. The impacts of several parameters on catalyst’s selectivity and activity, such as time, temperature, solvents, catalyst dosage, and stirring speed, were comprehensively studied. The results revealed that in the presence of Ag-Co/S as a catalyst, O2 could be employed as an effective oxidant for the catalytic oxidation of cinnamyl alcohol to cinnamaldehyde (CD) with 99% selectivity and 90% conversion. In terms of cost effectiveness, catalytic activity, selectivity, and recyclability, Ag-Co/S outperforms the competition. As a result, under the green chemistry methodology, it can be utilized as an effective catalyst for the conversion of CA to CD.