Published in

MDPI, Remote Sensing, 14(13), p. 2839, 2021

DOI: 10.3390/rs13142839

Links

Tools

Export citation

Search in Google Scholar

On the Geomagnetic Field Line Resonance Eigenfrequency Variations during Seismic Event

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper, we report high statistical evidence for a seismo–ionosphere effects occurring in conjunction with an earthquake. This finding supports a lithosphere-magnetosphere coupling mechanism producing a plasma density variation along the magnetic field lines, mechanically produced by atmospheric acoustic gravity waves (AGWs) impinging the ionosphere. We have analysed a large sample of earthquakes (EQ) using ground magnetometers data: in 28 of 42 analysed case events, we detect a temporary stepwise decrease (Δf) of the magnetospheric field line resonance (FLR) eigenfrequency (f*). Δf decreases of ∼5–25 mHz during ∼20–35 min following the time of the EQ. We present an analytical model for f*, able to reproduce the behaviour observed during the EQ. Our work is in agreement with recent results confirming co-seismic direct coupling between lithosphere, ionosphere and magnetosphere opening the way to new remote sensing methods, from space/ground, of the earth seismic activity.