Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sustainability, 15(13), p. 8289, 2021

DOI: 10.3390/su13158289

Links

Tools

Export citation

Search in Google Scholar

Numerical Simulation of Homogeneous–Heterogeneous Reactions through a Hybrid Nanofluid Flowing over a Rotating Disc for Solar Heating Applications

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Several materials, such as aluminum and copper, exhibit non-Newtonian rheological behaviors. Aluminum and copper nanoparticles are ideal for wiring power grids, including overhead power transmission lines and local power distribution lines, because they provide a better conductivity-to-weight ratio than bulk copper; they are also some of the most common materials used in electrical applications. Therefore, the current investigation inspected the flow characteristics of homogeneous–heterogeneous reactions in a hybrid nanofluid flowing over a rotating disc. The velocity slip condition was examined. The energy equation was developed by employing the first law of thermodynamics. Mixed convection thermal radiation and the convective condition effect were addressed. The dimensionless governing models were solved to give the best possible investigative solution using the fourth- and fifth-order Runge–Kutta–Felhberg numerical method. The effects of different influential variables on the velocity and temperature were scrutinized graphically. The effects of the variation of various sundry parameters on the friction factor and Nusselt numbers were also analyzed. The results revealed that the velocity gradient increased significantly for augmented values of the mixed convection parameter. Here, the velocity gradient increased more rapidly for a hybrid nanoliquid than for a nanofluid. The thermal distribution was enhanced due to a significantly increased radiation parameter.