Dissemin is shutting down on January 1st, 2025

Published in

The Royal Society, Interface, 180(18), p. 20210336, 2021

DOI: 10.1098/rsif.2021.0336

Links

Tools

Export citation

Search in Google Scholar

Excessive adventitial stress drives inflammation-mediated fibrosis in hypertensive aortic remodelling in mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hypertension induces significant aortic remodelling, often adaptive but sometimes not. To identify immuno-mechanical mechanisms responsible for differential remodelling, we studied thoracic aortas from 129S6/SvEvTac and C57BL/6 J mice before and after continuous 14-day angiotensin II infusion, which elevated blood pressure similarly in both strains. Histological and biomechanical assessments of excised vessels were similar at baseline, suggesting a common homeostatic set-point for mean wall stress. Histology further revealed near mechano-adaptive remodelling of the hypertensive 129S6/SvEvTac aortas, but a grossly maladaptive remodelling of C57BL/6 J aortas. Bulk RNA sequencing suggested that increased smooth muscle contractile processes promoted mechano-adaptation of 129S6/SvEvTac aortas while immune processes prevented adaptation of C57BL/6 J aortas. Functional studies confirmed an increased vasoconstrictive capacity of the former while immunohistochemistry demonstrated marked increases in inflammatory cells in the latter. We then used multiple computational biomechanical models to test the hypothesis that excessive adventitial wall stress correlates with inflammatory cell infiltration. These models consistently predicted that increased vasoconstriction against an increased pressure coupled with modest deposition of new matrix thickens the wall appropriately, restoring wall stress towards homeostatic consistent with adaptive remodelling. By contrast, insufficient vasoconstriction permits high wall stresses and exuberant inflammation-driven matrix deposition, especially in the adventitia, reflecting compromised homeostasis and gross maladaptation.