International Union of Crystallography, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 4(77), p. 594-604, 2021
DOI: 10.1107/s2052520621005655
Full text: Unavailable
The crystal structure of CrAs was investigated using synchrotron X-ray single-crystal diffraction for separate dependences on temperature (30–400 K) and on pressure (0–9.46 GPa). The isosymmetrical magnetostructural phase transition at T N = 267 K can induce a change in the microstructure by twinning due to a crossing of the orthohexagonal setting of the unit-cell parameter ratio c/b. Within the crystal structure, one particular Cr–Cr distance exhibits anomalous behavior in that it is nearly unaffected by temperature and pressure in the paramagnetic phase, which is stable above 267 K and at high pressures. The distinction of this shortest Cr–Cr distance might be of importance for the superconducting properties of CrAs.