Published in

Wiley, physica status solidi (a) – applications and materials science, 1(221), 2023

DOI: 10.1002/pssa.202300186

Physical Chemistry of Semiconductor Materials and Interfaces XX, 2021

DOI: 10.1117/12.2594211

Links

Tools

Export citation

Search in Google Scholar

Exciton and excited-state charge transfer at 2D van der Waals interfaces

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Combining materials with diverse properties into two‐dimensional (2D) van der Waals heterostructures lies at the heart of electronic, optoelectronic, and photonic applications. Prerequisite is a significant degree of electronic or photonic coupling of the constituents across the heterointerface. Understanding and controlling these interactions is mandatory to achieve the desired functionality. This review focuses on the charge and energy transfer processes and their dynamics in a specific class of van der Waals heterostructures, namely such composed of semiconducting transition metal dichalcogenides and conjugated organic molecules. With the help of prototypical material combinations, the importance of a precise knowledge of the interfacial electronic structure is demonstrated as it governs the excited‐state dynamics. This review aims at providing basic design guidelines to achieve functional 2D organic/inorganic van der Waals heterostructures with final properties that can be designed by careful selection of the organic component.