Dissemin is shutting down on January 1st, 2025

Published in

International Union of Crystallography, Journal of Applied Crystallography, 4(54), p. 1173-1178, 2021

DOI: 10.1107/s1600576721006579

Links

Tools

Export citation

Search in Google Scholar

Spatial correlation of embedded nanowires probed by X-ray off-Bragg scattering of the host matrix

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

It is shown that information on the spatial correlation of nano-objects embedded in a crystalline matrix can be retrieved by analysing the X-ray scattering around the Bragg reflections of the host matrix. Data are reported for vertically aligned Ni and CoNi alloy nanowires (NWs) in an SrTiO3 matrix. When the Bragg condition is fulfilled for the matrix and not for the NWs, the latter can be approximated by voids, and the scattering around the matrix reflections contains information on the self-correlation of the NWs (i.e. on their diameter d) and on the correlation between NWs (interdistance D). Nondestructive synchrotron X-ray diffraction data provide information on these values averaged over large areas, complementing local transmission electron microscopy observations. The measurements show that off-Bragg scattering around the matrix reflections can be exploited to study the spatial correlation and morphology of embedded nano-objects, independently of their crystallinity or strain or the presence of defects.