Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Oncogene, 38(40), p. 5718-5729, 2021

DOI: 10.1038/s41388-021-01926-y

Links

Tools

Export citation

Search in Google Scholar

Synergistic melanoma cell death mediated by inhibition of both MCL1 and BCL2 in high-risk tumors driven by NF1/PTEN loss

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractMelanomas driven by loss of the NF1 tumor suppressor have a high risk of treatment failure and effective therapies have not been developed. Here we show that loss-of-function mutations of nf1 and pten result in aggressive melanomas in zebrafish, representing the first animal model of NF1-mutant melanomas harboring PTEN loss. MEK or PI3K inhibitors show little activity when given alone due to cross-talk between the pathways, and high toxicity when given together. The mTOR inhibitors, sirolimus, everolimus, and temsirolimus, were the most active single agents tested, potently induced tumor-suppressive autophagy, but not apoptosis. Because addition of the BCL2 inhibitor venetoclax resulted in compensatory upregulation of MCL1, we established a three-drug combination composed of sirolimus, venetoclax, and the MCL1 inhibitor S63845. This well-tolerated drug combination potently and synergistically induces apoptosis in both zebrafish and human NF1/PTEN-deficient melanoma cells, providing preclinical evidence justifying an early-stage clinical trial in patients with NF1/PTEN-deficient melanoma.