Published in

Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 2021

DOI: 10.1210/clinem/dgab556

Links

Tools

Export citation

Search in Google Scholar

Epicardial and Pericardial Adiposity Without Myocardial Steatosis in Cushing Syndrome

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Context Cardiovascular disease is the leading cause of death in patients with Cushing syndrome. Cortisol excess and adverse metabolic profile could increase cardiac fat, which can subsequently impair cardiac structure and function. Objective We aimed to evaluate cardiac fat mass and distribution in patients with Cushing syndrome. Methods In this prospective, cross-sectional study, 23 patients with Cushing syndrome and 27 control individuals of comparable age, sex, and body mass index were investigated by cardiac magnetic resonance imaging and proton spectroscopy. Patients were explored before and after biochemical disease remission. Myocardial fat measured by the Dixon method was the main outcome measure. The intramyocardial triglyceride/water ratio measured by spectroscopy and epicardial and pericardial fat volumes were secondary outcome measures. Results No difference was found between patients and controls in intramyocardial lipid content. Epicardial fat mass was increased in patients compared to controls (30.8 g/m2 [20.4-34.8] vs 17.2 g/m2 [13.1-23.5], P < .001). Similarly, pericardial fat mass was increased in patients compared to controls (28.3 g/m2 [17.9-38.0] vs 11.4 g/m2 [7.5-19.4], P = .003). Sex, glycated hemoglobin A1c, and the presence of hypercortisolism were independent determinants of epicardial fat. Pericardial fat was associated with sex, impaired glucose homeostasis and left ventricular wall thickness. Disease remission decreased epicardial fat mass without affecting pericardial fat. Conclusion Intramyocardial fat stores are not increased in patients with Cushing syndrome, despite highly prevalent metabolic syndrome, suggesting increased cortisol-mediated lipid consumption. Cushing syndrome is associated with marked accumulation of epicardial and pericardial fat. Epicardial adiposity may exert paracrine proinflammatory effects promoting cardiomyopathy.