Published in

Springer, Experimental Mechanics, 1(62), p. 59-73, 2021

DOI: 10.1007/s11340-021-00754-1

Links

Tools

Export citation

Search in Google Scholar

In Situ Mechanical Loading and Neutron Bragg-edge Imaging, Applied to Polygranular Graphite On IMAT@ISIS

Journal article published in 2021 by T. A. C. Zillhardt ORCID, G. Burca ORCID, D. Liu, T. J. Marrow
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Bragg edge imaging have seen significant developments in the last decade with the availability of new time-resolved detectors, however, there have been no studies of changes in local coherent scattering from grain reorientation and deformation with load. Such damage accommodation mechanism may occur in (quasi)-brittle materials. Objective We developed a novel method using in-situ Bragg imaging at the ISIS spallation neutron and muon source on the IMAT (Imaging and MATerials science and engineering) instrument using an energy-resolved detector setup. We collected and analysed data of a proof-of-concept experiment demonstrating the use of the method. Methods We have developed a loading apparatus that addresses the constraints posed by Bragg imaging, allowing us to resolve features in the material microstructure. We use energy-resolved neutron imaging to obtain images in energy bins and we have developed a set of codes to register and correlate these images, as well as detect changes in local coherent scattering, in situ. Results Preliminary results from this method on Gilsocarbon nuclear graphite allow qualitative observation of local changes in Bragg contrast, which may be due to deformation or grain reorientation. Conclusions We have demonstrated that we can track changes in local coherent scattering under mechanical load, with sufficient resolution to track features with a size above 100 microns. This method, apparatus and accompanying codes may be used on the IMAT instruments by users interested to better understand deformation in their materials.