Dissemin is shutting down on January 1st, 2025

Published in

World Scientific Publishing, Journal of Mechanics in Medicine and Biology, 07(21), 2021

DOI: 10.1142/s0219519421500524

Links

Tools

Export citation

Search in Google Scholar

Modeling of Flagellum Behavior and Two-Dimensional Sperm Cell Motility Within the Context of Fluid–solid Interactions

Journal article published in 2021 by Seyed Esmail Razavi, Elias Marandi, Vahid Farhangmehr ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, the flagellar motility of a swimmer microorganism as a model of a human sperm cell, inside a two-dimensional channel as a model of the female reproductive tract containing a viscous fluid, is numerically investigated. The Navier–Stokes equations governing the fluid are coupled with the equations governing the models flagellum via applying a fluid–solid interaction approach and then solved using the finite element method. To stimulate the flagellum to move, a prescribed sinusoidal waveform is applied to it. The strain induced by this waveform along the flagellum initiates a continuous interaction between the flagellum and the fluid. The simulations are validated using data available in the literature. A very good agreement is seen between them. The results show that by decreasing the Young modulus of the flagellum as well as increasing the fluid viscosity, the swimming velocity of the model significantly decreases. It is found that for lower Young modulus of the flagellum, the effect of the fluid viscosity on the flagellar deformation is stronger. It is also found that for higher amplitude of the waveform applied to stimulate the flagellum, both the swimming velocity of the model and the average work rate are greater. Moreover, it is found that in a channel with a smaller height, the model swims at a higher speed and with a higher average work rate.