Published in

American Association for Cancer Research, Molecular Cancer Research, 1(20), p. 11-29, 2022

DOI: 10.1158/1541-7786.mcr-21-0038

Links

Tools

Export citation

Search in Google Scholar

Cell-Intrinsic Mechanisms of Drug Tolerance to Systemic Therapies in Cancer

Journal article published in 2022 by Camille Leonce, Pierre Saintigny ORCID, Sandra Ortiz-Cuaran ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract In patients with cancer with metastatic disease, the rate of complete tumor response to systemic therapies is low, and residual lesions persist in the majority of patients due to early molecular adaptation in cancer cells. A growing body of evidence suggests that a subpopulation of drug-tolerant persister cells—a reversible phenotype characterized by reduced drug sensitivity and decreased cell proliferation—maintains residual disease and may serve as a reservoir for resistant phenotypes. The survival of these residual tumor cells can be caused by reactivation of specific signaling pathways, phenotypic plasticity (i.e., transdifferentiation), epigenetic or metabolic reprogramming, downregulation of apoptosis as well as transcriptional remodeling. In this review, we discuss the molecular mechanisms that enable adaptive survival in drug-tolerant cells. We describe the main characteristics and dynamic nature of this persistent state, and highlight the current therapeutic strategies that may be used to interfere with the establishment of drug-tolerant cells, as an alternative to improve objective response to systemic therapies and delay the emergence of resistance to improve long-term survival.