Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Crystals, 8(11), p. 954, 2021

DOI: 10.3390/cryst11080954

Links

Tools

Export citation

Search in Google Scholar

Calcium Oxalate and Gallic Acid: Structural Characterization and Process Optimization toward Obtaining High Contents of Calcium Oxalate Monohydrate and Dihydrate

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The search for an efficient drug or inhibitor in the formation process of kidney stones has been a promising research topic towards reducing the risks of the formation of disease. However, several challenges have been faced in investigating the most common constituents of kidney stones, calcium oxalate and its hydrate forms (COM, COD and COT). This study focuses on the preparation and structural characterization (TG, XRD, FTIR, SEM) of calcium oxalate hydrates in the presence of gallic acid (GA) and by varying operating parameters such as temperature (25 °C, 36.5 °C and 48 °C), pH (5.6, 6.5 and 7.5) and amount of added GA (ranging from 100 mg to 1000 mg). Response surface methodology was applied in order to evaluate the effects of operating parameters in the formation of COM and COD, and for the process optimization towards maximizing their content in samples. The results indicated that GA inhibited the formation of COM (0–100%) and promoted the formation of COD (0 ≤ 99%), while a medium pH and the amount of added GA showed a significant effect in the process of COD formation. In order to investigate the interactions established in the formation process and the possible adsorption between GA and the formed crystals, electrochemical measurements were performed.