Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Pharmaceutics, 8(13), p. 1286, 2021

DOI: 10.3390/pharmaceutics13081286

Links

Tools

Export citation

Search in Google Scholar

Assessing the Functional Redundancy between P-gp and BCRP in Controlling the Brain Distribution and Biliary Excretion of Dual Substrates with PET Imaging in Mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are co-localized at the blood–brain barrier, where they display functional redundancy to restrict the brain distribution of dual P-gp/BCRP substrate drugs. We used positron emission tomography (PET) with the metabolically stable P-gp/BCRP substrates [11C]tariquidar, [11C]erlotinib, and [11C]elacridar to assess whether a similar functional redundancy as at the BBB exists in the liver, where both transporters mediate the biliary excretion of drugs. Wild-type, Abcb1a/b(−/−), Abcg2(−/−), and Abcb1a/b(−/−)Abcg2(−/−) mice underwent dynamic whole-body PET scans after i.v. injection of either [11C]tariquidar, [11C]erlotinib, or [11C]elacridar. Brain uptake of all three radiotracers was markedly higher in Abcb1a/b(−/−)Abcg2(−/−) mice than in wild-type mice, while only moderately changed in Abcb1a/b(−/−) and Abcg2(−/−) mice. The transfer of radioactivity from liver to excreted bile was significantly lower in Abcb1a/b(−/−)Abcg2(−/−) mice and almost unchanged in Abcb1a/b(−/−) and Abcg2(−/−) mice (with the exception of [11C]erlotinib, for which biliary excretion was also significantly reduced in Abcg2(−/−) mice). Our data provide evidence for redundancy between P-gp and BCRP in controlling both the brain distribution and biliary excretion of dual P-gp/BCRP substrates and highlight the utility of PET as an upcoming tool to assess the effect of transporters on drug disposition at a whole-body level.