Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Nano, 3(2), p. 222-241, 2021

DOI: 10.3390/applnano2030016

Links

Tools

Export citation

Search in Google Scholar

Effect on Mouse Liver Morphology of CeO2, TiO2 and Carbon Black Nanoparticles Translocated from Lungs or Deposited Intravenously

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Exposure to nanoparticles by various routes results in size-dependent translocation of nanoparticles to the systemic circulation and subsequent accumulation in the liver. The purpose of this study was to determine possible adverse effects in the liver of long-lasting nanoparticle presence in the organ. Mice exposed to a single dose (162 µg/animal equivalent to 9 mg/kg body weight) of TiO2, CeO2 or carbon black nanoparticles by intratracheal instillation or intravenous injection, resulting in relatively low or high liver burdens, were followed for 1, 28 or 180 days. Clinical appearance, feed intake, body and liver weights, hematological indices, and transaminases and alkaline phosphatase activities were unaffected by exposure. Exposure-related foreign material persisted in the liver up to 180 days after intratracheal and intravenous exposure, mainly in sinusoids, near Kupffer cells, or around blood vessels. Increased incidences of histological findings after intratracheal or intravenous exposure included: initially, prominent nuclei of Kupffer cells, the apparent increase in binucleate hepatocytes (TiO2 and carbon black) and inflammatory infiltrations (CeO2); later, cytoplasmic vacuolation, pyknosis and necrosis, especially for CeO2. Thus, neither low nor high nanoparticle burden in the liver affected enzymatic markers of liver injury, but indications of exposure-related necrotic changes, particularly for CeO2 nanoparticles, were noted.