Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Current Issues in Molecular Biology, 2(43), p. 1036-1042, 2021

DOI: 10.3390/cimb43020073

Links

Tools

Export citation

Search in Google Scholar

Neonatal Diabetes in Patients Affected by Liang-Wang Syndrome Carrying KCNMA1 Variant p.(Gly375Arg) Suggest a Potential Role of Ca2+ and Voltage-Activated K+ Channel Activity in Human Insulin Secretion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Liang-Wang syndrome (LIWAS) is a polymalformative syndrome first described in 2019 caused by heterozygous mutation of the KCNMA1 gene encoding the Ca2+ and voltage-activated K+ channel (BKC). The KCNMA1 variant p.(Gly356Arg) abolishes the function of BKC and blocks the generation of K+ current. The phenotype of this variant includes developmental delay, and visceral and connective tissue malformations. So far, only three cases of LWAS have been described, one of which also had neonatal diabetes (ND). We present the case of a newborn affected by LIWAS carrying the p.(Gly375Arg) variant who manifested diabetes in the first week of life. The description of our case strongly increases the frequency of ND in LIWAS patients and suggests a role of BK inactivation in human insulin secretion. The knowledge on the role of BKC in insulin secretion is very poor. Analyzing the possible mechanisms that could explain the association of LIWAS with ND, we speculate that BK inactivation might impair insulin secretion through the alteration of ion-dependent membrane activities and mitochondrial functions in β-cells, as well as the impaired intra-islet vessel reactivity.