Published in

SAGE Publications, Journal of Biomaterials Applications, 2(36), p. 358-371, 2021

DOI: 10.1177/08853282211024164

Links

Tools

Export citation

Search in Google Scholar

Development of a chitosan and hyaluronic acid hydrogel with potential for bioprinting utilization: A preliminary study

Journal article published in 2021 by Thaís Vieira de Souza ORCID, Sonia Maria Malmonge, Arnaldo R. Santos ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bioprinting is a technique that has been applied in the areas of tissue engineering and regenerative medicine (TERM). Natural polymer-based hydrogels are known for their favorable biocompatible properties, as well as attractive biomaterials for cell encapsulation. These hydrogels provide an aqueous three-dimensional environment with biologically relevant chemical and physical signals, mimicking the natural environment of the extracellular matrix (ECM). Chitosan (CHI) and hyaluronic acid (HA) have been widely researched for biomedical applications. Bioinks are “ink” formulations, usually hydrogels, that allow the printing of living cells. This work proposes the development of a low cost and simple chitosan CHI-AH hydrogel with potential to become a bioink. At physiological temperature, the biomaterials form a hydrogel. The material developed was characterized by the analysis of morphology, cytotoxicity, and cell viability. FTIR showed the characteristic vibrational bands of chitosan and HA. No difference in swelling was observed between the different formulations studied, although SEM showed architectural differences between the hydrogels obtained. Extract cytotoxicity testing showed that the hydrogel is not cytotoxic. The direct toxicity test also revealed the absence of toxicity, but the cells had difficulty migrating into the gel, probably because of its density. These data were confirmed by SEM. Further testing are ongoing to better understand the gel’s characteristics to improve the limitations found so far.