Published in

MDPI, Sensors, 17(21), p. 5961, 2021

DOI: 10.3390/s21175961

Links

Tools

Export citation

Search in Google Scholar

Multi-Excitation Infrared Fusion for Impact Evaluation of Aluminium-BFRP/GFRP Hybrid Composites

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Fibre metal laminates are widely implemented in the aerospace industry owing to the merits of fatigue resistance and plastic properties. An effective defect assessment technique needs to be investigated for this type of composite materials. In order to achieve accurate impact-induced damage evaluation, a multi-excitation infrared fusion method is introduced in this study. Optical excitation thermography with high performance on revealing surface and subsurface defects is combined with vibro-thermography to improve the capability of detection on defects. Quantitative analysis is carried out on the temperature curve to assess the impact-induced deformation. A new image fusion framework including feature extraction, feature selection and fusion steps is proposed to fully utilize the information from two excitation modalities. Six fibre metal laminates which contain aluminium-basalt fibre reinforced plastic and aluminium-glass fibre reinforced plastic are investigated. Features from different perspectives are compared and selected via intensity contrast on deformation area for fusion imaging. Both types of defects (i.e., surface and sub-surface) and the internal deformation situation of these six samples are characterized clearly and intuitively.