Published in

MDPI, Agronomy, 9(11), p. 1770, 2021

DOI: 10.3390/agronomy11091770

Links

Tools

Export citation

Search in Google Scholar

Evaluation of Advanced Backcrosses of Eggplant with Solanum elaeagnifolium Introgressions under Low N Conditions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Selection and breeding of eggplant (Solanum melongena) materials with good performance under low nitrogen (N) fertilization inputs is a major breeding objective to reduce environmental degradation, risks for human health, and production costs. Solanum elaeagnifolium, an eggplant wild relative, is a potential source of variation for introgression breeding in eggplant. We evaluated 24 plant, fruit, and composition traits in a set of genotyped advanced backcrosses (BC2 and BC3) of eggplant with S. elaeagnifolium introgressions under low N conditions. Significant differences were found between the two parents for most traits, and a wide phenotypic diversity was observed in the advanced backcrosses, with some individuals with a much higher yield, nitrogen use efficiency (NUE), and phenolics content than the S. melongena parent. In general, the lower the proportion of S. elaeagnifolium genome introgressed in the advanced backcrosses, the higher was the general phenotypic resemblance to S. melongena. Putative QTLs were detected for stem diameter (pd4), presence of prickles in stem (ps6), leaf (pl6) and fruit calyx (pc6), fruit width (fw7), chlorogenic acid content (cg5), total phenolic acid peaks area (ph6), chlorogenic acid peak area (ca1), and phenolic acids pattern (cp1). Our results reveal that introgression breeding of eggplant with S. elaeagnifolium has a great interest for eggplant breeding, particularly for adaptation to low N conditions. These materials can potentially contribute to the development of improved eggplant varieties for a more sustainable agriculture.