Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, Mobile Information Systems, (2021), p. 1-14, 2021

DOI: 10.1155/2021/5802658

Links

Tools

Export citation

Search in Google Scholar

Analyzing Drivers’ Distractions due to Smartphone Usage: Evidence from AutoLog Dataset

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The usage of a smartphone while driving has been declared a global portent and has been admitted as a leading cause of crashes and accidents. Numerous solutions, such as Android Auto and CarPlay, are used to facilitate for the drivers by minimizing driver distractions. However, these solutions restrict smartphone usage, which is impractical in real driving scenarios. This research paper presents a comprehensive analysis of the available solutions to identify issues in smartphone activities. We have used empirical evaluation and dataset-based evaluation to investigate the issues in the existing smartphone user interfaces. The results show that using smartphones while driving can disrupt normal driving and may lead to change the steering wheel abruptly, focus off the road, and increases cognitive load, which could collectively result in a devastating situation. To justify the arguments, we have conducted an empirical study by collecting data using maxed mode survey, i.e., questionnaires and interviews from 98 drivers. The results show that existing smartphone-based solutions are least suitable due to numerous issues (e.g., complex and rich interfaces, redundant and time-consuming activities, requiring much visual and mental attention, and contextual constraints), making their effectiveness less viable for the drivers. Based on findings obtained from Ordinal Logistic Regression (OLR) models, it is recommended that the interactions between the drivers and smartphone could be minimized by developing context-aware adaptive user interfaces to overcome the chances of accidents.