Published in

MDPI, Energies, 18(14), p. 5614, 2021

DOI: 10.3390/en14185614

Links

Tools

Export citation

Search in Google Scholar

Improving the Convergence Period of Adaptive Data Rate in a Long Range Wide Area Network for the Internet of Things Devices

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A Long-Range Wide Area Network (LoRaWAN) is one of the most efficient technologies and is widely adopted for the Internet of Things (IoT) applications. The IoT consists of massive End Devices (EDs) deployed over large geographical areas, forming a large environment. LoRaWAN uses an Adaptive Data Rate (ADR), targeting static EDs. However, the ADR is affected when the channel conditions between ED and Gateway (GW) are unstable due to shadowing, fading, and mobility. Such a condition causes massive packet loss, which increases the convergence time of the ADR. Therefore, we address the convergence time issue and propose a novel ADR at the network side to lower packet losses. The proposed ADR is evaluated through extensive simulation. The results show an enhanced convergence time compared to the state-of-the-art ADR method by reducing the packet losses and retransmission under dynamic mobile LoRaWAN network.