Published in

Mineralogical Society of America, American Mineralogist, 6(107), p. 1053-1064, 2022

DOI: 10.2138/am-2021-7752

Links

Tools

Export citation

Search in Google Scholar

The glass transition and the non-Arrhenian viscosity of carbonate melts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We report the first calorimetric observation of the glass transition for a carbonate melt. A carbonate glass [55K2CO3–45MgCO3 (molar)] was quenched from 780 °C at 0.1 GPa. The activation energy of structural relaxation close to the glass transition was derived through a series of thermal treatments comprising excursions across the glass transition at different heating rates. Viscosities just above the glass transition temperature were obtained by applying a shift factor to the calorimetric results. These viscosity measurements (in the range of 109 Pa·s) at supercooled temperatures (ca. 230 °C) dramatically extend the temperature range of data for carbonates, which were previously restricted to super-liquidus viscosities well below 1 Pa·s. Combining our calorimetrically derived results with published alkaline-earth carbonate melt viscosities at high temperatures yields a highly non-Arrhenian viscosity-temperature relationship and confirms that carbonate liquids are “fragile.” Based on simulations, fragile behavior is also exhibited by Na2CO3 melt. In both cases, the fragility presumably relates to the formation of temperature-dependent low-dimensional structures and Vogel-Fulcher-Tammann (VFT) curves adequately describe the viscosity-temperature relationships of carbonate melts below 1000 °C.