Dissemin is shutting down on January 1st, 2025

Published in

Canadian Science Publishing, Canadian Journal of Fisheries and Aquatic Sciences, 4(79), p. 677-691, 2022

DOI: 10.1139/cjfas-2020-0352

Links

Tools

Export citation

Search in Google Scholar

Myxobolus cerebralisestablishment and spread: a graphical synthesis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Myxobolus cerebralis is the parasite causing whirling disease, which has dramatic ecological impacts due to its potential to cause high mortality in salmonids. The large-scale efforts, necessary to underpin an effective surveillance program, have practical and economic constraints. There is, hence, a clear need for models that can predict the parasite spread. Model development, however, often heavily depends on knowing influential variables and governing mechanisms. We have developed a graphical model for the establishment and spread of M. cerebralis by synthesizing experts’ opinion and empirical studies. First, we conducted a series of workshops with experts to identify variables believed to impact the establishment and spread of the parasite M. cerebralis and visualized their interactions via a directed acyclic graph. Then we refined the graph by incorporating empirical findings from the literature. The final graph’s nodes correspond to variables whose considerable impact on M. cerebralis establishment and spread is either supported by empirical data or confirmed by experts, and the graph’s directed edges represent direct causality or strong correlation. This graphical model facilitates communication and education of whirling disease and provides an empirically driven framework for constructing future models, especially Bayesian networks.