Published in

Oxford University Press, AoB PLANTS, 2024

DOI: 10.1093/aobpla/plae014

Links

Tools

Export citation

Search in Google Scholar

Exitrons: offering new roles to retained introns - the novel regulators of protein diversity and utility

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Exitrons are exonic-introns. This subclass of intron-retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods, and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.