Published in

Bentham Science Publishers, Current Enzyme Inhibition, 3(17), p. 204-216, 2021

DOI: 10.2174/1573408017666210914105731

Links

Tools

Export citation

Search in Google Scholar

Experimental and Computational Insights into Bis-indolylmethane Derivatives as Potent Antimicrobial Agents Inhibiting 2,2-dialkylglycine Decarboxylase

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: A series of bis(indolyl)methanes (3a-3o) have been synthesized using a greener and new approach using the reaction of different substituted aldehydes and indole in the presence of an easily available and biodegradable base such as piperidine in acetic acid at room temperature and characterized with UV (Ultraviolet-visible spectroscopy), Gas Chromatography-Mass Spectrometry (GCMS), Proton Nuclear Magnetic Resonance (H-NMR), and Fourier Transform Infrared Spectroscopy (FTIR). Methods: All 15 newly synthesized compounds (3a-3o) were subjected to in-vitro anti-microbial activity determination and compared with the known standard drug ciprofloxacin (1-2 μg/mL). Our in-silico analysis on the target protein, pdb id: 1d7u suggested that these analogues would be highly active against bacterial targets and thus, would act as good antimicrobial agents. Results: All 15 newly synthesized compounds (3a-3o) displayed potent activity on various experimental microbial strains (1.0-1.4 μg/mL). Compound, 3k was obtained as the best docked compound against common bacterial target enzyme, (pdb id:1d7u). The standard, Ciprofloxacin, retained the docking score of -111.3 Kcal/mol with similar binding amino acid residues (LYS272 (Pi-cation); ALA A:245 (Pisigma); TRP A:138 (Pi-Pi); ALA A:112; and MET A:141 (Pi-alkyl)) as of inbound. Conclusion : We believe that our current study would shed more light on the development of potent bis(indolyl)methanes as antimicrobial agents.