Published in

British Institute of Radiology, British Journal of Radiology, 1126(94), p. 20201350, 2021

DOI: 10.1259/bjr.20201350

Links

Tools

Export citation

Search in Google Scholar

Clinical evaluation of data-driven respiratory gating for PET/CT in an oncological cohort of 149 patients: impact on image quality and patient management

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Orange circle
Preprint: archiving restricted
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Objectives: To evaluate the impact of fully automatic motion correction by data-driven respiratory gating (DDG) on positron emission tomography (PET) image quality, lesion detection and patient management. Materials and Methods: A total of 149 patients undergoing PET/CT for cancer (re-)staging were retrospectively included. Patients underwent a PET/CT on a digital detector scanner and for every patient a PET data set where DDG was enabled (PETDDG) and as well as where DDG was not enabled (PETnonDDG) was reconstructed. All PET data sets were evaluated by two readers which rated the general image quality, motion effects and organ contours. Further, both readers reviewed all scans on a case-by-case basis and evaluated the impact of PETDDG on additional apparent lesion, change of report, and change of management. Results: In 85% (n = 126) of the patients, at least one bed position was acquired using DDG, resulting in mean scan time increase of 4:37 min per patient in the whole study cohort (n = 149). General image quality was not rated differently for PETnonDDG and PETDDG images (p = 1.000) while motion effects (i.e. indicating general blurring) was rated significantly lower in PETDDG images and organ contours, including liver and spleen, were rated significantly sharper using PETDDG as compared to PETnonDDG (all p < 0.001). In 27% of patients, PETDDG resulted in a change of the report and in a total of 12 cases (8%), PETDDG resulted in a change of further clinical management. Conclusion: Deviceless DDG provided reliable fully automatic motion correction in clinical routine and increased lesion detectability and changed management in a considerable number of patients. Advances in knowledge: DDG enables PET/CT with respiratory gating to be used routinely in clinical practice without external gating equipment needed.