Published in

Springer, European Journal of Applied Physiology, 12(121), p. 3437-3445, 2021

DOI: 10.1007/s00421-021-04793-3

Links

Tools

Export citation

Search in Google Scholar

Bone mineral density in high-level endurance runners: part A—site-specific characteristics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose Physical activity, particularly mechanical loading that results in high-peak force and is multi-directional in nature, increases bone mineral density (BMD). In athletes such as endurance runners, this association is more complex due to other factors such as low energy availability and menstrual dysfunction. Moreover, many studies of athletes have used small sample sizes and/or athletes of varying abilities, making it difficult to compare BMD phenotypes between studies. Method The primary aim of this study was to compare dual-energy X-ray absorptiometry (DXA) derived bone phenotypes of high-level endurance runners (58 women and 45 men) to non-athletes (60 women and 52 men). Our secondary aim was to examine the influence of menstrual irregularities and sporting activity completed during childhood on these bone phenotypes. Results Female runners had higher leg (4%) but not total body or lumbar spine BMD than female non-athletes. Male runners had lower lumbar spine (9%) but similar total and leg BMD compared to male non-athletes, suggesting that high levels of site-specific mechanical loading was advantageous for BMD in females only and a potential presence of reduced energy availability in males. Menstrual status in females and the number of sports completed in childhood in males and females had no influence on bone phenotypes within the runners. Conclusion Given the large variability in BMD in runners and non-athletes, other factors such as variation in genetic make-up alongside mechanical loading probably influence BMD across the adult lifespan.