Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(12), 2021

DOI: 10.1038/s41467-021-25832-9

Links

Tools

Export citation

Search in Google Scholar

Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractUnderstanding the atomic structure and structural instability of organic-inorganic hybrid perovskites is the key to appreciate their remarkable photoelectric properties and understand failure mechanism. Here, using low-dose imaging technique by direct-detection electron-counting camera in a transmission electron microscope, we investigate the atomic structure and decomposition pathway of CH3NH3PbI3 (MAPbI3) at the atomic scale. We successfully image the atomic structure of perovskite in real space under ultra-low electron dose condition, and observe a two-step decomposition process, i.e., initial loss of MA+ followed by the collapse of perovskite structure into 6H-PbI2 with their critical threshold doses also determined. Interestingly, an intermediate phase (MA0.5PbI3) with locally ordered vacancies can robustly exist before perovskite collapses, enlightening strategies for prevention and recovery of perovskite structure during the degradation. Associated with the structure evolution, the bandgap gradually increases from ~1.6 eV to ~2.1 eV. In addition, it is found that C-N bonds can be readily destroyed under irradiation, releasing NH3 and HI and leaving hydrocarbons. These findings enhance our understanding of the photoelectric properties and failure mechanism of MAPbI3, providing potential strategies into material optimization.