Dissemin is shutting down on January 1st, 2025

Published in

Canadian Science Publishing, Canadian Journal of Chemistry, 4(100), p. 245-251, 2022

DOI: 10.1139/cjc-2021-0245

Links

Tools

Export citation

Search in Google Scholar

Stoichiomorphic halogen-bonded cocrystals: a case study of 1,4-diiodotetrafluorobenzene and 3-nitropyridine

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The concept of variable stoichiometry cocrystallization is explored in halogen-bonded systems. Three novel cocrystals of 1,4-diiodotetrafluorobenzene and 3-nitropyridine with molar ratios of 1:1, 2:1, and 1:2, respectively, are prepared by slow evaporation methods. Single-crystal X-ray diffraction analysis reveals key differences between each of the nominally similar cocrystals. For instance, the 1:1 cocrystal crystallizes in the P21/n space group and features a single chemically and crystallographically unique halogen bond between iodine and the pyridyl nitrogen. The 2:1 cocrystal crystallizes in the [Formula: see text] space group and features a halogen bond between iodine and one of the nitro oxygens in addition to an iodine–nitrogen halogen bond. The 1:2 cocrystal crystallizes with a large unit cell (V = 9896 Å3) in the Cc space group and features 10 crystallographically distinct iodine-nitrogen halogen bonds. Powder X-ray diffraction experiments carried out on the 1:1 and 2:1 cocrystals confirm that gentle grinding does not alter the crystal forms. 1H → 13C and 19F → 13C cross-polarization magic angle spinning (CP/MAS) NMR experiments performed on powdered samples of the 1:1 and 2:1 cocrystals are used as spectral editing tools to select for either the halogen bond acceptor or donor, respectively. Carbon-13 chemical shifts in the cocrystals are shown to change only very subtly relative to pure solid 1,4-diiodotetrafluorobenzene, but the shift of the carbon directly bonded to iodine nevertheless increases, consistent with halogen bond formation (e.g., a shift of +1.6 ppm for the 2:1 cocrystal). This work contributes new examples to the field of variable stoichiometry cocrystal engineering with halogen bonds.