Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nanomaterials, 10(11), p. 2538, 2021

DOI: 10.3390/nano11102538

Links

Tools

Export citation

Search in Google Scholar

Stable, Ductile and Strong Ultrafine HT-9 Steels via Large Strain Machining

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Beyond the current commercial materials, refining the grain size is among the proposed strategies to manufacture resilient materials for industrial applications demanding high resistance to severe environments. Here, large strain machining (LSM) was used to manufacture nanostructured HT-9 steel with enhanced thermal stability, mechanical properties, and ductility. Nanocrystalline HT-9 steels with different aspect rations are achieved. In-situ transmission electron microscopy annealing experiments demonstrated that the nanocrystalline grains have excellent thermal stability up to 700 °C with no additional elemental segregation on the grain boundaries other than the initial carbides, attributing the thermal stability of the LSM materials to the low dislocation densities and strains in the final microstructure. Nano-indentation and micro-tensile testing performed on the LSM material pre- and post-annealing demonstrated the possibility of tuning the material’s strength and ductility. The results expound on the possibility of manufacturing controlled nanocrystalline materials via a scalable and cost-effective method, albeit with additional fundamental understanding of the resultant morphology dependence on the LSM conditions.